Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(9): 107511, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37636056

RESUMEN

Cell differentiation is associated with global changes in translational activity. Here, we characterize how mRNA poly(A) tail processing supports this dynamic. We observe that decreased translation during neuronal differentiation of P19 cells correlates with the downregulation of 5'-terminal oligopyrimidine (TOP) transcripts which encode the translational machinery. Despite their downregulation, TOP transcripts remain highly stable and show increased translation as cells differentiate. Changes in TOP mRNA metabolism are reflected by their accumulation with poly(A) tails ∼60-nucleotide (nt) long. The dynamic changes in poly(A) processing can be partially recapitulated by depleting LARP1 or activating the mTOR pathway in undifferentiated cells. Although mTOR-induced accumulation of TOP mRNAs with tails ∼60-nt long does not trigger differentiation, it is associated with reduced proliferation of neuronal progenitors. We propose that while TOP mRNAs are transcriptionally silenced, their post-transcriptional regulation mediated by a specific poly(A) processing ensures an adequate supply of ribosomes to complete differentiation.

2.
Epigenetics ; 18(1): 2088173, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35770551

RESUMEN

Cadmium (Cd) is a toxic metal ubiquitous in the environment. In utero, Cd is inefficiently transported to the foetus but causes foetal growth restriction (FGR), likely through impairment of the placenta where Cd accumulates. However, the underlying molecular mechanisms are poorly understood. Cd can modulate the expression of imprinted genes, defined by their transcription from one parental allele, which play critical roles in placental and foetal growth. The expression of imprinted genes is governed by DNA methylation at Imprinting Control Regions (ICRs), which are susceptible to environmental perturbation. The imprinted gene Cdkn1c/CDKN1C is a major regulator of placental development, is implicated in FGR, and shows increased expression in response to Cd exposure in mice. Here, we use a hybrid mouse model of in utero Cd exposure to determine if the increase in placental Cdkn1c expression is caused by changes to ICR DNA methylation and loss of imprinting (LOI). Consistent with prior studies, Cd causes FGR and impacts placental structure and Cdkn1c expression at late gestation. Using polymorphisms to distinguish parental alleles, we demonstrate that increased Cdkn1c expression is not driven by changes to DNA methylation or LOI. We show that Cdkn1c is expressed primarily in the placental labyrinth which is proportionally increased in size in response to Cd. We conclude that the Cd-associated increase in Cdkn1c expression can be fully explained by alterations to placental structure. These results have implications for understanding mechanisms of Cd-induced placental dysfunction and, more broadly, for the study of FGR associated with increased Cdkn1c/CDKN1C expression.


Asunto(s)
Metilación de ADN , Placenta , Embarazo , Femenino , Animales , Ratones , Placenta/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Impresión Genómica , Placentación/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo
3.
Toxicol Sci ; 191(1): 34-46, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36200916

RESUMEN

Cadmium (Cd) exposure in adulthood is associated with nonalcoholic fatty liver disease (NAFLD), characterized by steatosis, inflammation, and fibrosis. The prevalence of NAFLD in children is increasing, suggesting a role for the developmental environment in programming susceptibility. However, the role of developmental Cd exposure in programming NAFLD and the underlying mechanisms remain unclear. We have proposed that imprinted genes are strong candidates for connecting the early life environment and later life disease. In support of this, we previously identified roles for the Imprinted Gene Network (IGN) and its regulator Zac1 in programming NAFLD in response to maternal metabolic dysfunction. Here, we test the hypothesis that developmental Cd exposure is sufficient to program NAFLD, and further, that this process is mediated by Zac1 and the IGN. Using mice, we show that developmental cadmium chloride (CdCl2) exposure leads to histological, biochemical, and molecular signatures of steatosis and fibrosis in juveniles. Transcriptomic analyses comparing livers of CdCl2-exposed and control mice show upregulation of Zac1 and the IGN coincident with disease presentation. Increased hepatic Zac1 expression is independent of promoter methylation and imprinting statuses. Finally, we show that over-expression of Zac1 in cultured hepatocytes is sufficient to induce lipid accumulation in a Pparγ-dependent manner and demonstrate direct binding of Zac1 to the Pparγ promoter. Our findings demonstrate that developmental Cd exposure is sufficient to program NAFLD in later life, and with our previous work, establish Zac1 and the IGN as key regulators of prosteatotic and profibrotic pathways, two of the major pathological hallmarks of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Cadmio , Cloruro de Cadmio/toxicidad , PPAR gamma , Hígado/metabolismo , Fibrosis
4.
Hepatology ; 76(4): 1090-1104, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35083765

RESUMEN

BACKGROUND AND AIMS: Within the next decade, NAFLD is predicted to become the most prevalent cause of childhood liver failure in developed countries. Predisposition to juvenile NAFLD can be programmed during early life in response to maternal metabolic syndrome (MetS), but the underlying mechanisms are poorly understood. We hypothesized that imprinted genes, defined by expression from a single parental allele, play a key role in maternal MetS-induced NAFLD, due to their susceptibility to environmental stressors and their functions in liver homeostasis. We aimed to test this hypothesis and determine the critical periods of susceptibility to maternal MetS. APPROACH AND RESULTS: We established a mouse model to compare the effects of MetS during prenatal and postnatal development on NAFLD. Postnatal but not prenatal MetS exposure is associated with histological, biochemical, and molecular signatures of hepatic steatosis and fibrosis in juvenile mice. Using RNA sequencing, we show that the Imprinted Gene Network (IGN), including its regulator Zac1, is up-regulated and overrepresented among differentially expressed genes, consistent with a role in maternal MetS-induced NAFLD. In support of this, activation of the IGN in cultured hepatoma cells by overexpressing Zac1 is sufficient to induce signatures of profibrogenic transformation. Using chromatin immunoprecipitation, we demonstrate that Zac1 binds the TGF-ß1 and COL6A2 promoters, forming a direct pathway between imprinted genes and well-characterized pathophysiological mechanisms of NAFLD. Finally, we show that hepatocyte-specific overexpression of Zac1 is sufficient to drive fibrosis in vivo. CONCLUSIONS: Our findings identify a pathway linking maternal MetS exposure during postnatal development to the programming of juvenile NAFLD, and provide support for the hypothesis that imprinted genes play a central role in metabolic disease programming.


Asunto(s)
Síndrome Metabólico , Enfermedad del Hígado Graso no Alcohólico , Factores de Transcripción , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Genes Supresores de Tumor/fisiología , Síndrome Metabólico/complicaciones , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1
5.
Cell Mol Life Sci ; 78(24): 8049-8071, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34748024

RESUMEN

Multiple RNA pathways are required to produce functional sperm. Here, we review RNA post-transcriptional regulation during spermatogenesis with particular emphasis on the role of 3' end modifications. From early studies in the 1970s, it became clear that spermiogenesis transcripts could be stored for days only to be translated at advanced stages of spermatid differentiation. The transition between the translationally repressed and active states was observed to correlate with the shortening of the transcripts' poly(A) tail, establishing a link between RNA 3' end metabolism and male germ cell differentiation. Since then, numerous RNA metabolic pathways have been implicated not only in the progression through spermatogenesis, but also in the maintenance of genomic integrity. Recent studies have characterized the elusive 3' biogenesis of Piwi-interacting RNAs (piRNAs), identified a critical role for messenger RNA (mRNA) 3' uridylation in meiotic progression, established the mechanisms that destabilize transcripts with long 3' untranslated regions (3'UTRs) in post-mitotic cells, and defined the physiological relevance of RNA exonucleases and deadenylases in male germ cells. In this review, we discuss RNA processing in the male germline in the light of the most recent findings. A brief recollection of different RNA-processing events will aid future studies exploring post-transcriptional regulation in spermatogenesis.


Asunto(s)
Regulación de la Expresión Génica , Procesamiento Postranscripcional del ARN , Espermatogénesis , Espermatozoides/fisiología , Animales , Humanos , Masculino , Espermatozoides/citología
6.
Sci Rep ; 8(1): 16875, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30443025

RESUMEN

Besides their well-known roles in digestion and fat solubilization, bile acids (BAs) have been described as signaling molecules activating the nuclear receptor Farnesoid-X-receptor (FXRα) or the G-protein-coupled bile acid receptor-1 (GPBAR-1 or TGR5). In previous reports, we showed that BAs decrease male fertility due to abnormalities of the germ cell lineage dependent on Tgr5 signaling pathways. In the presentstudy, we tested whether BA exposure could impact germ cell DNA integrity leading to potential implications for progeny. For that purpose, adult F0 male mice were fed a diet supplemented with cholic acid (CA) or the corresponding control diet during 3.5 months prior mating. F1 progeny from CA exposed founders showed higher perinatal lethality, impaired BA homeostasis and reduced postnatal growth, as well as altered glucose metabolism in later life. The majority of these phenotypic traits were maintained up to the F2 generation. In F0 sperm cells, differential DNA methylation associated with CA exposure may contribute to the initial programming of developmental and metabolic defects observed in F1 and F2 offspring. Tgr5 knock-out mice combined with in vitro strategies defined the critical role of paternal Tgr5 dependent pathways in the multigenerational impacts of ancestral CA exposure.


Asunto(s)
Bilis/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Linaje de la Célula/efectos de los fármacos , Ácido Cólico/farmacología , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Dieta , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Fenotipo , Transducción de Señal/efectos de los fármacos , Espermatozoides/citología , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , ADN Metiltransferasa 3B
7.
Proc Biol Sci ; 285(1891)2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30429298

RESUMEN

The behaviour of a nursing dam influences the development, physiology, and behaviour of her offspring. Maternal behaviours can be modulated both by environmental factors, including diet, and by physical or behavioural characteristics of the offspring. In most studies of the effects of the environment on maternal behaviour, F0 dams nurse their own F1 offspring. Because the F1 are indirectly exposed to the environmental stressor in utero in these studies, it is not possible to differentiate between effects on maternal behaviour from direct exposure of the dam and those mediated by changes in the F1 as a consequence of in utero exposure. In this study, we used a mouse model of high-fat (HF) diet feeding, which has been shown to influence maternal behaviours, combined with cross-fostering to discriminate between these effects. We tested whether the diet of the F0 dam or the exposure experienced by the F1 pups in utero is the most significant predictor of maternal behaviour. Neither factor significantly influenced pup retrieval behaviours. However, strikingly, F1in utero exposure was a significant predictor of maternal behaviour in the 15 min immediately following pup retrieval while F0 diet had no discernable effect. Our findings suggest that in utero exposure to HF diet programmes physiological changes in the offspring which influence the maternal behaviours of their dam after birth.


Asunto(s)
Animales Recién Nacidos/fisiología , Dieta Alta en Grasa , Conducta Materna/fisiología , Exposición Materna , Ratones/fisiología , Animales , Femenino , Ratones Endogámicos C57BL , Embarazo
8.
Stem Cell Reports ; 9(1): 315-328, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28669602

RESUMEN

Spermatogenesis is the process by which spermatozoa are generated from spermatogonia. This cell population is heterogeneous, with self-renewing spermatogonial stem cells (SSCs) and progenitor spermatogonia that will continue on a path of differentiation. Only SSCs have the ability to regenerate and sustain spermatogenesis. This makes the testis a good model to investigate stem cell biology. The Farnesoid X Receptor alpha (FXRα) was recently shown to be expressed in the testis. However, its global impact on germ cell homeostasis has not yet been studied. Here, using a phenotyping approach in Fxrα-/- mice, we describe unexpected roles of FXRα on germ cell physiology independent of its effects on somatic cells. FXRα helps establish and maintain an undifferentiated germ cell pool and in turn influences male fertility. FXRα regulates the expression of several pluripotency factors. Among these, in vitro approaches show that FXRα controls the expression of the pluripotency marker Lin28 in the germ cells.


Asunto(s)
Receptores Citoplasmáticos y Nucleares/metabolismo , Espermatogénesis , Espermatozoides/citología , Envejecimiento , Animales , Células Cultivadas , Femenino , Fertilidad , Eliminación de Gen , Regulación de la Expresión Génica , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Reproducción , Células de Sertoli/citología , Células de Sertoli/metabolismo , Espermatozoides/metabolismo , Testículo/citología , Testículo/metabolismo , Testículo/ultraestructura
9.
Mol Aspects Med ; 56: 101-109, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28511935

RESUMEN

Next to their involvement in digestion, bile acids have been defined as signaling molecules. They have been demonstrated to control many physiological functions among which lipid homeostasis, glucose and energy metabolisms. Bile acids are ligands of several receptors and multiple studies using transgenic mouse models defined the major roles of their respective nuclear and membrane receptors namely the Farnesoid-X-Receptor (FXRα) and the G-protein-coupled bile acid receptor 1(GPBAR1; TGR5). Here we review the reports highlighting the impacts of bile acids on testicular physiology and on male reproductive functions. The studies on mouse models open perspectives to better understand the deleterious effects of bile acids on testicular pathophysiologies and fertility disorders. Additional studies are needed to corroborate these correlations in humans.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Acoplados a Proteínas G/genética , Espermatogénesis/efectos de los fármacos , Testículo/metabolismo , Animales , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/farmacología , Metabolismo Energético/genética , Fertilidad/efectos de los fármacos , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica , Glucosa/metabolismo , Homeostasis , Humanos , Masculino , Ratones , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Espermatogénesis/genética , Testículo/citología , Testículo/efectos de los fármacos , Testículo/crecimiento & desarrollo , Testosterona/biosíntesis
10.
Sci Rep ; 7: 42182, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28181583

RESUMEN

Bile acids (BAs) are molecules with endocrine activities controlling several physiological functions such as immunity, glucose homeostasis, testicular physiology and male fertility. The role of the nuclear BA receptor FXRα in the control of BA homeostasis has been well characterized. The present study shows that testis synthetize BAs. We demonstrate that mice invalidated for the gene encoding FXRα have altered BA homeostasis in both liver and testis. In the absence of FXRα, BA exposure differently alters hepatic and testicular expression of genes involved in BA synthesis. Interestingly, Fxrα-/- males fed a diet supplemented with BAs show alterations of testicular physiology and sperm production. This phenotype was correlated with the altered testicular BA homeostasis and the production of intermediate metabolites of BAs which led to the modulation of CAR signaling pathways within the testis. The role of the CAR signaling pathways within testis was validated using specific CAR agonist (TCPOBOP) and inverse agonist (androstanol) that respectively inhibited or reproduced the phenotype observed in Fxrα-/- males fed BA-diet. These data open interesting perspectives to better define how BA homeostasis contributes to physiological or pathophysiological conditions via the modulation of CAR activity.


Asunto(s)
Ácidos y Sales Biliares/genética , Receptores Citoplasmáticos y Nucleares/genética , Reproducción/genética , Testículo/metabolismo , Androstanoles/farmacología , Animales , Ácidos y Sales Biliares/biosíntesis , Receptor de Androstano Constitutivo , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Espermatozoides/metabolismo
11.
Mol Aspects Med ; 56: 2-9, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28153453

RESUMEN

Primary bile acids are synthetized from cholesterol within the liver and then transformed by the bacteria in the intestine to secondary bile acids. In addition to their involvement in digestion and fat solubilization, bile acids also act as signaling molecules. Several receptors are sensors of bile acids. Among these receptors, this review focuses on the nuclear receptor FXRα and the G-protein-coupled receptor TGR5. This review briefly presents the potential links between bile acids and cancers that are discussed in more details in the other articles of this special issue of Molecular Aspects of Medicine focused on "Bile acids, roles in integrative physiology and pathophysiology".


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Acoplados a Proteínas G/genética , Animales , Biotransformación , Colesterol/metabolismo , Microbioma Gastrointestinal/fisiología , Homeostasis/fisiología , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Hígado/citología , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Polimorfismo Genético , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
12.
Oncotarget ; 7(15): 19468-82, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26848619

RESUMEN

The bile acid receptor Farnesol-X-Receptor alpha (FRXα) is a member of the nuclear receptor superfamily. FRXα is expressed in the interstitial compartment of the adult testes, which contain the Leydig cells. In adult, short term treatment (12 hours) with FRXα agonist inhibits the expression of steroidogenic genes via the induction of the Small heterodimer partner (SHP). However the consequences of FRXα activation on testicular pathophysiology have never been evaluated. We demonstrate here that mice fed a diet supplemented with bile acid during pubertal age show increased incidence of infertility. This is associated with altered differentiation and increase apoptosis of germ cells due to lower testosterone levels. At the molecular level, next to the repression of basal steroidogenesis via the induction expression of Shp and Dax-1, two repressors of steroidogenesis, the main action of the BA-FRXα signaling is through lowering the Leydig cell sensitivity to the hypothalamo-pituitary axis, the main regulator of testicular endocrine function. In conclusion, BA-FRXα signaling is a critical actor during sexual maturation.


Asunto(s)
Ácidos y Sales Biliares/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Maduración Sexual/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Ácidos y Sales Biliares/administración & dosificación , Línea Celular , Ácido Cólico/administración & dosificación , Ácido Cólico/farmacología , Fertilidad/efectos de los fármacos , Isoxazoles/farmacología , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Interferencia de ARN , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal/genética , Testículo/citología , Testículo/metabolismo , Testosterona/metabolismo
13.
PLoS One ; 10(10): e0139946, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26439743

RESUMEN

Bile acids have recently been demonstrated as molecules with endocrine activities controlling several physiological functions such as immunity and glucose homeostases. They act mainly through two receptors, the nuclear receptor Farnesol-X-Receptor alpha (FXRα) and the G-protein coupled receptor (TGR5). These recent studies have led to the idea that molecules derived from bile acids (BAs) and targeting their receptors must be good targets for treatment of metabolic diseases such as obesity or diabetes. Thus it might be important to decipher the potential long term impact of such treatment on different physiological functions. Indeed, BAs have recently been demonstrated to alter male fertility. Here we demonstrate that in mice with overweight induced by high fat diet, BA exposure leads to increased rate of male infertility. This is associated with the altered germ cell proliferation, default of testicular endocrine function and abnormalities in cell-cell interaction within the seminiferous epithelium. Even if the identification of the exact molecular mechanisms will need more studies, the present results suggest that both FXRα and TGR5 might be involved. We believed that this work is of particular interest regarding the potential consequences on future approaches for the treatment of metabolic diseases.


Asunto(s)
Ácidos y Sales Biliares/farmacología , Fertilidad/efectos de los fármacos , Infertilidad Masculina/inducido químicamente , Síndrome Metabólico/metabolismo , Sobrepeso/metabolismo , Animales , Barrera Hematotesticular/efectos de los fármacos , Barrera Hematotesticular/metabolismo , Proliferación Celular/efectos de los fármacos , Dieta Alta en Grasa , Infertilidad Masculina/metabolismo , Hígado/metabolismo , Masculino , Síndrome Metabólico/complicaciones , Ratones , Sobrepeso/complicaciones , Transducción de Señal
14.
Endocrinology ; 156(12): 4545-57, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26402841

RESUMEN

Liver X receptors (LXRs) are key regulators of lipid homeostasis and are involved in multiple testicular functions. The Lxrα(-/-);Lxrß(-/-) mice have illuminated the roles of both isoforms in maintenance of the epithelium in the seminiferous tubules, spermatogenesis, and T production. The requirement for LXRß in Sertoli cells have been emphasized by early abnormal cholesteryl ester accumulation in the Lxrß(-/-) and Lxrα(-/-);Lxrß(-/-) mice. Other phenotypes, such as germ cell loss and hypogonadism, occur later in life in the Lxrα(-/-);Lxrß(-/-) mice. Thus, LXRß expression in Sertoli cells seems to be essential for normal testicular physiology. To decipher the roles of LXRß within the Sertoli cells, we generated Lxrα(-/-);Lxrß(-/-):AMH-Lxrß transgenic mice, which reexpress Lxrß in Sertoli cells in the context of Lxrα(-/-);Lxrß(-/-) mice. In addition to lipid homeostasis, LXRß is necessary for maintaining the blood-testis barrier and the integrity of the germ cell epithelium. LXRß is also implicated in the paracrine action of Sertoli cells on Leydig cells to modulate T synthesis. The Lxrα(-/-);Lxrß(-/-) and Lxrα(-/-);Lxrß(-/-):AMH-Lxrß mice exhibit lipid accumulation in germ cells after the Abcg8 down-regulation, suggesting an intricate LXRß-dependent cooperation between the Sertoli cells and germ cells to ensure spermiogenesis. Further analysis revealed also peritubular smooth muscle defects (abnormal lipid accumulation and disorganized smooth muscle actin) and spermatozoa stagnation in the seminiferous tubules. Together the present work elucidates specific roles of LXRß in Sertoli cell physiology in vivo beyond lipid homeostasis.


Asunto(s)
Barrera Hematotesticular/metabolismo , Metabolismo de los Lípidos/genética , Receptores Nucleares Huérfanos/genética , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Espermatozoides/metabolismo , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Hormona Antimülleriana/genética , Regulación hacia Abajo , Expresión Génica , Homeostasis , Células Intersticiales del Testículo/metabolismo , Lipoproteínas/genética , Receptores X del Hígado , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Músculo Liso/metabolismo , Comunicación Paracrina/genética , Túbulos Seminíferos/metabolismo , Testículo/metabolismo , Testosterona/biosíntesis
15.
Endocrinology ; 156(2): 660-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25426871

RESUMEN

The small heterodimer partner (SHP, nuclear receptor subfamily 0, group B, member 2; NR0B2) is an atypical nuclear receptor known mainly for its role in bile acid homeostasis in the enterohepatic tract. We previously showed that NR0B2 controls testicular functions such as testosterone synthesis. Moreover, NR0B2 mediates the deleterious testicular effects of estrogenic endocrine disruptors leading to infertility. The endocrine homeostasis is essential for health, because it controls many physiological functions. This is supported by a large number of studies demonstrating that alterations of steroid activity lead to several kinds of diseases such as obesity and infertility. Within the testis, the functions of the Leydig cells are mainly controlled by the hypothalamo-pituitary axis via LH/chorionic gonadotropin (CG). Here, we show that LH/CG represses Nr0b2 expression through the protein kinase A-AMP protein kinase pathway. Moreover, using a transgenic mouse model invalidated for Nr0b2, we point out that NR0B2 mediates the repression of testosterone synthesis and subsequent germ cell apoptosis induced by exposure to anti-GnRH compound. Together, our data demonstrate a new link between hypothalamo-pituitary axis and NR0B2 in testicular androgen metabolism, making NR0B2 a major actor of testicular physiology in case of alteration of LH/CG levels.


Asunto(s)
Sistema Hipotálamo-Hipofisario/fisiología , Células Intersticiales del Testículo/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Testosterona/biosíntesis , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Gonadotropina Coriónica , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Receptores LHRH/antagonistas & inhibidores , Transducción de Señal
16.
Expert Opin Ther Targets ; 18(12): 1367-76, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25263461

RESUMEN

BACKGROUND: Liver physiology is sensitive to estrogens, which suggests that the liver might be a target of estrogenic endocrine disrupters (EED). However, the long-term consequences of neonatal exposure to EED on liver physiology have rarely been studied. The nuclear receptor small heterodimer partner (SHP) mediates the deleterious effects of neonatal exposure to diethylstilbestrol (DES) on male fertility. OBJECTIVES: As SHP is involved in liver homeostasis, we aimed to determine whether neonatal estrogenic exposure also affected adult liver physiology through SHP. Male mouse pups were exposed to DES in the first 5 days of life. RESULTS: DES exposure leads to alterations in the postnatal bile acid (BA) synthesis pathway. Neonatal DES-exposure affected adult liver BA metabolism and subsequently triglyceride (TG) homeostasis. The wild-type males neonatally exposed to DES exhibited increased liver weight and altered liver histology in the adult age. The use of deficient male mice revealed that SHP mediates the deleterious effects of DES treatment. These long-term effects of DES were associated with differently timed alterations in the expression of epigenetic factors. CONCLUSIONS: However, the molecular mechanisms by which neonatal exposure persist to affect the adult liver physiology remain to be defined. In conclusion, we demonstrate that neonatal DES exposure alters adult hepatic physiology in an SHP-dependent manner.


Asunto(s)
Dietilestilbestrol/toxicidad , Estrógenos no Esteroides/toxicidad , Hígado/efectos de los fármacos , Hígado/fisiología , Receptores Citoplasmáticos y Nucleares/deficiencia , Factores de Edad , Animales , Animales Recién Nacidos , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/fisiología , Hígado/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Hepatology ; 60(3): 1054-65, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24798773

RESUMEN

UNLABELLED: Bile acids (BAs) are signaling molecules that are involved in many physiological functions, such as glucose and energy metabolism. These effects are mediated through activation of the nuclear and membrane receptors, farnesoid X receptor (FXR-α) and TGR5 (G-protein-coupled bile acid receptor 1; GPBAR1). Although both receptors are expressed within the testes, the potential effect of BAs on testis physiology and male fertility has not been explored thus far. Here, we demonstrate that mice fed a diet supplemented with cholic acid have reduced fertility subsequent to testicular defects. Initially, germ cell sloughing and rupture of the blood-testis barrier occur and are correlated with decreased protein accumulation of connexin-43 (Cx43) and N-cadherin, whereas at later stages, apoptosis of spermatids is observed. These abnormalities are associated with increased intratesticular BA levels in general and deoxycholic acid, a TGR5 agonist, in particular. We demonstrate here that Tgr5 is expressed within the germ cell lineage, where it represses Cx43 expression through regulation of the transcriptional repressor, T-box transcription factor 2 gene. Consistent with this finding, mice deficient for Tgr5 are protected against the deleterious testicular effects of BA exposure. CONCLUSIONS: These data identify the testis as a new target of BAs and emphasize TGR5 as a critical element in testicular pathophysiology. This work may open new perspectives on the potential effect of BAs on testis physiology during liver dysfunction.


Asunto(s)
Ácido Cólico/metabolismo , Fertilidad , Infertilidad Masculina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Testículo/efectos de los fármacos , Animales , Ácido Cólico/administración & dosificación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Espermatozoides/efectos de los fármacos , Testosterona/sangre
18.
Spermatogenesis ; 3(2): e24114, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23885302

RESUMEN

Regarding male fertility, biomedical issues have opposite goals to treat infertility or develop contraceptive drugs. Recently, the identification of the molecular mechanisms involved in germ cell differentiation suggest that spermiogenesis has to be put at the crossroad to reach these goals. Concerning fertility issues, citizens in our modern world are schizophrenic. On one side, couples have the possibility to control conception; and on the other side, more and more couples suffer from the misfortune of being infertile. These two societal problems lead to intensive research and conflicting government policies. However, these opposing goals rely on a better understanding of germ cell differentiation.

19.
Cell Mol Life Sci ; 70(23): 4511-26, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23784309

RESUMEN

Bile acids are cholesterol metabolites that have been extensively studied in recent decades. In addition to having ancestral roles in digestion and fat solubilization, bile acids have recently been described as signaling molecules involved in many physiological functions, such as glucose and energy metabolisms. These signaling pathways involve the activation of the nuclear receptor farnesoid X receptor (FXRα) or of the G protein-coupled receptor TGR5. In this review, we will focus on the emerging role of FXRα, suggesting important functions for the receptor in steroid metabolism. It has been described that FXRα is expressed in the adrenal glands and testes, where it seems to control steroid production. FXRα also participates in steroid catabolism in the liver and interferes with the steroid signaling pathways in target tissues via crosstalk with steroid receptors. In this review, we discuss the potential impacts of bile acid (BA), through its interactions with steroid metabolism, on glucose metabolism, sexual function, and prostate and breast cancers. Although several of the published reports rely on in vitro studies, they highlight the need to understand the interactions that may affect health. This effect is important because BA levels are increased in several pathophysiological conditions related to liver injuries. Additionally, BA receptors are targeted clinically using therapeutics to treat liver diseases, diabetes, and cancers.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Esteroides/metabolismo , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Masculino , Modelos Biológicos , Neoplasias de la Próstata/metabolismo
20.
Oncogene ; 32(24): 2917-2926, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22797077

RESUMEN

The Ras/mitogen-activated protein kinase (MAPK) signalling cascade regulates various biological functions, including cell growth, proliferation and survival. As such, this pathway is often deregulated in cancer, including melanomas, which frequently harbour activating mutations in the NRAS and BRAF oncogenes. Hyperactive MAPK signalling is known to promote protein synthesis, but the mechanisms by which this occurs remain poorly understood. Here, we show that expression of oncogenic forms of Ras and Raf promotes the constitutive activation of the mammalian target of rapamycin (mTOR). Using pharmacological inhibitors and RNA interference, we find that the MAPK-activated protein kinase RSK (p90 ribosomal S6 kinase) is partly required for these effects. Using melanoma cell lines carrying activating BRAF mutations, we show that ERK/RSK signalling regulates assembly of the translation initiation complex and polysome formation, as well as the translation of growth-related messenger RNAs containing a 5'-terminal oligopyrimidine (TOP) motif. Accordingly, we find that RSK inhibition abrogates tumour growth in mice. Our findings indicate that RSK may be a valuable therapeutic target for the treatment of tumours characterized by deregulated MAPK signalling, such as melanoma.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Melanoma/metabolismo , Melanoma/patología , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica , Activación Enzimática/efectos de los fármacos , Factor 4F Eucariótico de Iniciación/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina , Melanoma/enzimología , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Quinasas raf/metabolismo , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...